

INSTALLATION AND OPERATION

QUICK GUIDE

WWW.UNICORE.COM

UFirebirdII-UC6580 Evaluation Kit

Copyright© 2009-2025, Unicore Communications, Inc.

Data subject to change without notice.

Revision History

Version	Revision History	Date
R1.0	First release.	Apr., 2023
R1.1	Changed the product photos.	June, 2025

Legal right notice

This manual provides information and details on the products of Unicore Communication, Inc. ("Unicore") referred to herein.

All rights, title and interest to this document and the information such as data, designs, layouts contained in this manual are fully reserved, including but not limited to the copyrights, patents, trademarks and other proprietary rights as relevant governing laws may grant, and such rights may evolve and be approved, registered or granted from the whole information aforesaid or any part(s) of it or any combination of those parts.

Unicore holds the trademarks of "和芯星通", "UNICORECOMM", "Unicore" and other trade name, trademark, icon, logo, brand name and/or service mark of Unicore products or their product serial referred to in this manual (collectively "Unicore Trademarks").

This manual or any part of it, shall not be deemed as, either expressly, implied, by estoppel or any other form, the granting or transferring of Unicore rights and/or interests (including but not limited to the aforementioned trademark rights), in whole or in part.

Disclaimer

The information contained in this manual is provided "as is" and is believed to be true and correct at the time of its publication or revision. This manual does not represent, and in any case, shall not be construed as a commitments or warranty on the part of Unicore with respect to the fitness for a particular purpose/use, the accuracy, reliability and correctness of the information contained herein.

Information, such as product specifications, descriptions, features and user guide in this manual, are subject to change by Unicore at any time without prior notice, which may not be completely consistent with such information of the specific product you purchase.

Should you purchase our product and encounter any inconsistency, please contact us or our local authorized distributor for the most up-to-date version of this manual along with any addenda or corrigenda.

Foreword

This document describes the use of the UC6580 evaluation kit (EVK) for the function and performance test of the chip.

Target Readers

This document applies to technicians who are familiar with GNSS receivers.

Content

1	1 Overview			
2	EV	K Introduction	2	
	2.1	Block Diagram	2	
	2.2	Power Supply	3	
	2.3	Configuration	3	
3	Int	erface	4	
	3.1	USB Interface	5	
	3.2	Antenna Interface	5	
	3.3	Button	5	
	3.4	Communication Mode Selection	5	
	3.5	Status Indicator	6	
	3.6	GNSS Power Supply Interface	6	
4	Po	sitioning and Power Consumption Test	7	
	4.1	Positioning Test	7	
	4.2	Power Consumption Test	8	
	4.2	.1 Power Consumption in Running Mode	8	
	4.2	.2 Power Consumption in V_BACK Mode	10	
5	Fir	mware Upgrade	11	
6	Remark			

1 Overview

UC6580 evaluation kit (EVK) has two parts: bottom board and GNSS adapter. The bottom board connects to the GNSS adapter via the connector. The EVK is mainly used in the function and performance test of the chip UC6580 for the convenience of the users.

Figure 1-1 UC6580 EVK

- (1) Bottom Board
- (2) GNSS Adapter

2 EVK Introduction

2.1 Block Diagram

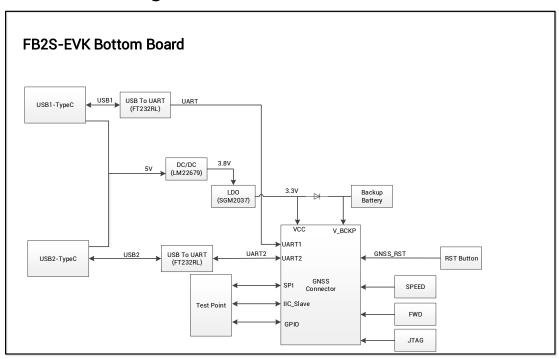


Figure 2-1 Block Diagram of Bottom Board

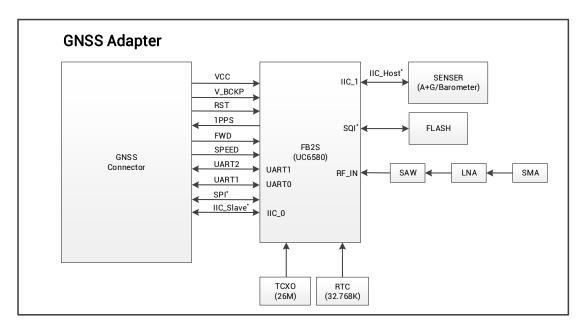


Figure 2-2 Block Diagram of GNSS Adapter

^{*:} Supported later.

2.2 Power Supply

The EVK can be powered by a 5 V supply via the USB2.0 interface J17 or J6. You can directly connect it to the PC to communicate as well as supplying power.

2.3 Configuration

The bottom board provides many interfaces, such as two USB interfaces, a FWD signal SMA interface and a SPEED signal SMA interface. And on the GNSS adapter, there is the GNSS RF interface J4, the power interfaces VDDIO/DCDC_IN/V_BACK, and the antenna feed interface VANT etc.

3 Interface

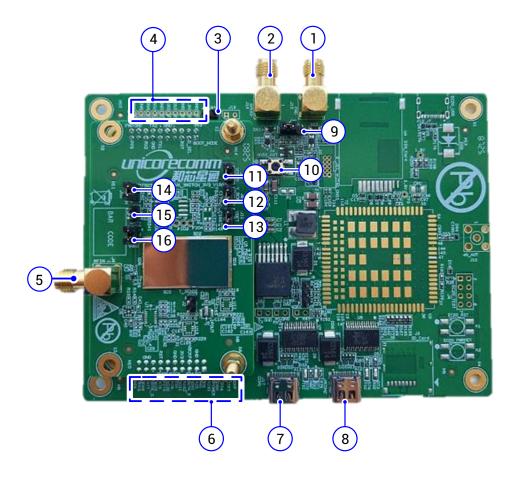


Figure 3-1 EVK

- (1) FWD Signal SMA Interface (J12)
- (3) SPI/I²C Mode Selection (J25)
- (5) GNSS Antenna SMA Interface (J4)
- (7) USB1 Interface (COM1,J17)
- (9) SPEED Signal Phase Selection (J20)
- (11) VDDIO Jumper (J1)
- (13) VDET Jumper (J11)
- (15) VQPS Jumper (J8)

- (2) SPEED Signal SMA Interface (J16)
- (4) SPI/I²C/PPS Test Point
- (6) Status Indicator
- (8) USB2 Interface (COM2,J6)
- (10) GNSS Reset Button (K4)
- (12) Backup Battery V_BACK Jumper (J9)
- (14) DCDC_IN Jumper (J10)
- (16) Antenna Feed Jumper (J3)

3.1 USB Interface

The EVK supports two Type-C USB2.0 interfaces J17 and J6. See **Figure 3-1** (7) and (8). USB1 and USB2 respectively correspond to UART1 and UATR2 of the GNSS adapter. Both of the two UARTs can be used to communicate with the host, but only UART1 can be used for firmware upgrade.

3.2 Antenna Interface

The bottom board has two SMA interfaces: J16 (SPEED signal) and J12 (FWD signal). The voltage of the two signals should be no more than 15 V and no less than 5 V. The SPEED signal supports phase switch, which is controlled by the jumper J20; the signal is positive when pin 1 and 2 are connected and negative when pin 2 and 3 are connected. The pin 1 and 2 are connected by default.

The antenna interface on the GNSS adapter is used to connect the GNSS antenna. When you use an external active antenna, you need to install the jumper cap to the J11 (VDET jumper) and J3 (VANT jumper). The antenna voltage is (VDDIO-0.1V).

3.3 Button

On the bottom board, there is a chip reset button K4.

3.4 Communication Mode Selection

J25 on the bottom board supports the communication mode selection. Installing the jumper cap (ON) is the SPI¹ mode while removing (OFF) is the UART and I²C_slave¹ mode. By default, it is OFF.

When the SPI mode is selected, SPI_SCK is the SCL testing point and SPI_CS is the SDA testing point.

_

¹ Supported later.

3.5 Status Indicator

Indicator Symbol	Name	Description
D71	UART1-RX	Light on when receiving data; otherwise off
D72	UART1-TX	Light on when sending data; otherwise off
D73	UART2-RX	Light on when receiving data; otherwise off
D74	UART2-TX	Light on when sending data; otherwise off
D80	Power indicator	Light on when there is power supply; otherwise
D80		off
D66	PPS status indicator	Light on with low level voltage; off with high level
D00		voltage

3.6 GNSS Power Supply Interface

GNSS adapter has three power supply interfaces.

Symbol	Description	Pin 1	Pin 2
J1	VDDIO interface	3.3 V power supply	VDDIO power supply interface
J9	Backup battery interface	from the bottom	V_BACK power supply interface
J10	DCDC_IN interface	board	DCDC_IN power supply interface

Each interface has two pins. Pin 1 is connected to the 3.3 V power on the bottom board, and pin 2 is connected to different power domains. By default, the jumper caps are installed and the adapter is supplied by the power on the board. If you use an external voltage to power the interfaces, connect the power to pin 2.

4 Positioning and Power Consumption Test

4.1 Positioning Test

- 1. Connect the GNSS antenna to the interface J4 on the adapter and fix the antenna in a non-occluded area.
- 2. Connect the EVK to the PC through the USB interface. Then the power indicator is on.
- 3. Start the UPrecise on the PC, select the correct port and baud rate 115200 to make sure the receiver is connected.

Then the positioning related information appears on the screen, and in the situation of open sky, the CN0 is normally above 40. Refer to *UPrecise User Manual* for more details.

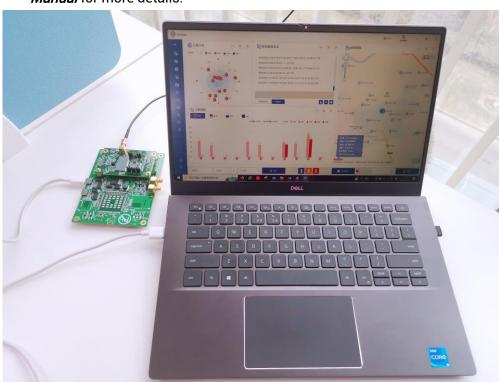


Figure 4-1 Connecting EVK to PC

4.2 Power Consumption Test

4.2.1 Power Consumption in Running Mode

To power the GNSS adapter, you can use an external voltage or the power from the bottom board. See 4.2.1.1 and 4.2.1.2 for the procedures to test the power consumption in the running mode with different power source.

4.2.1.1 Powered by Bottom Board

When the adapter is powered by the bottom board. Follow the procedures below to test the power consumption in the running mode.

- 1. Remove the VDDIO and DCDC_IN jumper caps before power on.
- 2. Use two test wires, one end of which inserted to the VDDIO jumper, and the other end connected to the multimeter (see **Figure 4-2**).
- 3. Do step 2 again with another two wires and a multimeter but insert the wires to DCDC_IN jumper.
- 4. Turn the multimeters to current mode.
- 5. Connect the EVK to the PC through the USB interface. Then the EVK is powered.
- 6. Connect the signal source to the antenna SMA interface J4. Set the signal strength to -130 dBm.
- 7. Start the UPrecise and make sure that the positioning is successful.
- 8. Read the current values of VDDIOcurrent and DCDC INcurrent.
- Compute the power consumption, which is equal to 3.3 V × (VDDIO_{current} + DCDC_IN_{current}).

Figure 4-2 Testing Power Consumption

If you just have one multimeter, you can measure the current VDDIO_{current} and DCDC_IN_{current} respectively. Make sure that when you measure either one of the current values, the other jumper cap is installed.

4.2.1.2 Powered by External Voltage

When you use the external voltage to power the adapter, the power consumption is tested as follows.

- 1. Remove the jumper caps of DCDC_IN (J10) and VDDIO (J1).
- 2. Connect the positive end (red) of the external power device to the pin 2 of DCDC_IN (J10) and VDDIO (J1). Here, you can use a one to two cable.
- 3. Connect the negative end (black) to the GND.
- 4. Connect the EVK to the PC through the USB interface. Then the EVK is powered.
- 5. Connect the signal source to the antenna SMA interface J4. Set the signal strength to -130 dBm.
- 6. Start the UPrecise and make sure that the positioning is successful.
- 7. Read the current values of DCDC_INcurrent. and VDDIOcurrent.

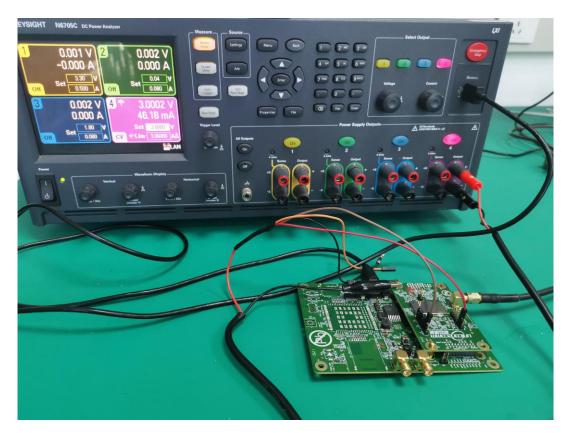


Figure 4-3 Testing DCDC_IN_{current}

8. Compute the power consumption, which is equal to External Voltage × (VDDIO_{current} + DCDC_IN_{current}).

Similarly, if you do not have the one to two cable, you can measure the current VDDIOcurrent and DCDC_INcurrent respectively.

4.2.2 Power Consumption in V_BACK Mode

To test the power consumption of V_BACK, do the following steps:

- 1. Remove the jumper caps of VDDIO and DCDC_IN.
- 2. Use two test wires, one end of which inserted to the VDDIO jumper, and the other end connected to the multimeter.
- 3. Do the steps 4 to 7 in section 4.2.1.1 again.
- 4. Read the current values of V_BACKcurrent.
- 5. Compute the power consumption, which is equal to 3.3V × V_BACK_{current}.

5 Firmware Upgrade

- Connect the EVK to PC through USB1 following the procedures described in section 4.1.
- Start the UPrecise.
- Click Receiver Upgrade to do the upgrade. Refer to UPrecise User Manual for more details.

6 Remark

After connecting the PC, if a confliction between the serial port and the mouse happens, you can remove the serial enumerator in the advanced settings of the serial port property.

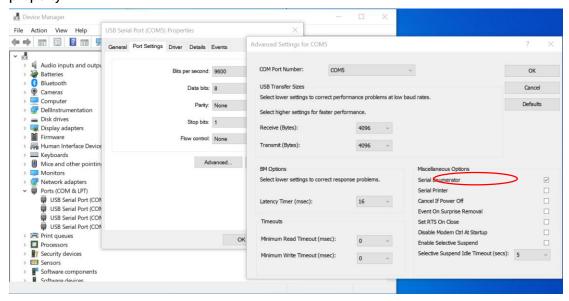


Figure 6-1 Removing Serial Enumerator

和芯星通科技(北京)有限公司

Unicore Communications, Inc.

北京市海淀区丰贤东路 7 号北斗星通大厦三层 F3, No.7, Fengxian East Road, Haidian, Beijing, P.R.China, 100094

www.unicore.com

Phone: 86-10-69939800

Fax: 86-10-69939888

info@unicorecomm.com

www.unicore.com